
Surviving Client/Server:
Cached Updates
by Steve Troxell

Last month I promised to take
you on a tour of all the spiffy

new database stuff in Delphi 2.0
and how it relates to client/server
development. Well, space and time
limits mean we’ll be able to take a
look at just one new feature this
month: cached updating with
TDataSet components. This refers
to buffering all changes made to
one or more datasets and commit-
ting them to the database all at
once. Ironically, that short, simple
sentence opens the door to a whole
slew of possibilities for your data-
base front ends, whether they are
based on a client/server database
or a desktop database.

To illustrate how this differs
from Delphi 1.0 (and Delphi 2.0
without caching enabled), let’s
take the example of a data-aware
grid used to edit a dataset. As you
modify fields or add new records in
this grid, Delphi posts the changes
to the database whenever you
explicitly or implicitly post the
record (by scrolling to a new re-
cord, for example). The same thing
happens when you delete from the
dataset: Delphi posts the change to
the database immediately.

When caching is enabled (the
dataset’s CachedUpdates property is
True), then these changes are held
locally within the application until
they are explicitly posted by the
ApplyUpdates method of TDatabase.
This sends the necessary update,
insert, or delete statements for
each record changed within the
dataset, all encased within a single
transaction. ApplyUpdates accepts
one or more TDataSet components
as parameters and will apply the
cached changes for all of these
datasets as a single transaction.
This allows you to post related
changes as a single unit, as in a
master/detail screen.

The program shown in Figure 1
illustrates this concept. This is the

CACHE1 example on this issue’s
disk, which I encourage you to ex-
periment with. The top grid is an
editable dataset, the bottom grid
represents another user looking at
the same dataset. When the Cached
Updates checkbox is cleared, if you
make a change to a record and
scroll off of it (or post it with the
navigator), you will immediately
see the change in the lower grid.
When the Cached Updates checkbox
is checked, the changes are not
seen in the lower grid until you
click the Post button. Alternatively,
you can abandon all changes by
clicking the Undo All button. The
event handlers for these buttons
are shown in Listing 1, where
dbEmployee is the TDatabase compo-
nent and qryGetEmployees is the
TQuery component populating the
upper grid.

Note that the three example pro-
grams in this article can be found
in the SURVIVE directory on this
issue’s disk. Since they allow modi-
fication of the example InterBase

database EMPLOYEE.GDB, they
are coded to use an alias called
MYEMPL, which is intended to be a
copy of EMPLOYEE.GDB. You
should either create this alias or
change the AliasName property of
the TDatabase components in the
two programs.

How do cached updates fit into
your client/server application
plans? Rather than a spurious bar-
rage of queries being sent off to the
server at uneven intervals, a single
grouping of queries is sent all at
once. The same total number of
queries is generated, but they are
packaged more efficiently for two
reasons.

First, a single large transmission
of data may result in less overall
network congestion than the same
data broken out into a series of
disjointed smaller transmissions.
The reason being that at least one
network packet must be created
and transmitted for each query
sent singly, but all the queries
could possibly fit in one network

➤ Figure 1: CACHE1
example program

procedure TfrmMain.btnPostClick(Sender: TObject);
begin
 dbEmployee.ApplyUpdates([qryGetEmployees]);
end;
procedure TfrmMain.btnUndoAllClick(Sender: TObject);
begin
 qryGetEmployees.CancelUpdates;
end;

➤ Listing 1: Posting/abandoning cached updates

48 The Delphi Magazine Issue 12

packet if sent at once. In any case,
the total number of packets needed
to transmit all the queries at once
will nearly always be less than the
total number of packets needed to
transmit them one at a time. This
can become a concern in a high
volume environment with a large
number of users and/or changes
per screen.

Second, when data-aware con-
trols are used in a case like the
CACHE1 program, the tendency is
to start a transaction at the begin-
ning of the edit process and then
either commit or rollback all the
changes depending on whether or
not the user posts them. Each up-
date holds a lock on the part of the
database being updated until the
entire transaction is completed.
This is not so much a concern with
InterBase as it is with most other
SQL servers. With uncached up-
dates, the duration of the transac-
tion is dependent on how long the
user takes to complete their
changes, and this can lead to
contention problems with other
users. With cached updates, the
same locks are occurring but the
transaction length is very short
(the duration of the ApplyUpdates
call) and contention is low because
the locks are dropped quickly.

Caching updates allows for more
practical data entry screen devel-
opment. As just described above,
the user can make any number of
changes to a screenful of data and
decide whether to apply them or
not at the click of a button. How-
ever, if the user decides to aban-
don their changes, the local cache
merely needs to be cleared with a
call to CancelUpdates. The data-
aware controls will automatically
be restored to their original values.
Without caching, you must either
wrap transaction control around
all the changes (with the attendant
pitfalls described above), or load
non-data-aware controls and ex-
plicitly post the changes on a save
action and reload original values
from the database on an abandon
action. The cached updates solu-
tion is much easier to program,
reduces database contention, and
provides much crisper response to
the user.

Identifying
Classes Of Changes
In looking at Figure 2, the CACHE2
program, you’ll see that the first
column of the grid shows the type
of change being made to that re-
cord. When pointing to a given row,
that row’s changes can be can-
celled with the Undo button. Notice
also the checkboxes at the top
alluding to the fact that you can
selectively display any subset of
changed records you want, even to
include showing deleted records. It
may be valuable to a user to be able
to selectively cancel a deletion of a
row (or any row change for that
matter) before posting the whole
set of changes. It may also be
helpful to get a filtered list of just
what was deleted, changed, or in-
serted prior to posting the whole
batch. With clever coding of the
grid’s OnDrawColumnCell event han-
dler, you could even paint different
background colors or use different

procedure TfrmMain.chkFilterClick(Sender: TObject);
var UpdateFilters: TUpdateRecordTypes;
begin
 UpdateFilters := [];
 if chkUnmodified.Checked then
 Include(UpdateFilters, rtUnmodified);
 if chkModified.Checked then
 Include(UpdateFilters, rtModified);
 if chkInserted.Checked then
 Include(UpdateFilters, rtInserted);
 if chkDeleted.Checked then
 Include(UpdateFilters, rtDeleted);
 qryGetEmployees.UpdateRecordTypes := UpdateFilters;
 if UpdateFilters = [] then begin
 ShowMessage(
 ’At least one display filter must be checked’);
 UpdateFilters := qryGetEmployees.UpdateRecordTypes;
 chkUnmodified.Checked := (rtUnmodified in UpdateFilters);
 chkModified.Checked := (rtModified in UpdateFilters);
 chkInserted.Checked := (rtInserted in UpdateFilters);
 chkDeleted.Checked := (rtDeleted in UpdateFilters);
 end;
end;
procedure TfrmMain.qryGetEmployeesCalcFields(
 DataSet: TDataSet);
begin
 { UpdateStatus is for the current record,
 contrary to what the online help says }
 with qryGetEmployeesStatus do begin
 case DataSet.UpdateStatus of
 usUnmodified: AsString := ’Unmodified’;
 usModified: AsString := ’Modified’;
 usInserted: AsString := ’Inserted’;
 usDeleted: AsString := ’Deleted’;
 end;
 end;
end;

procedure TfrmMain.dsGetEmployeesDataChange(
 Sender: TObject; Field: TField);
begin
 { Enable/disable the buttons depending on
 whether there are changes }
 if ChangingData then btnPost.Enabled := True
 else btnPost.Enabled := qryGetEmployees.UpdatesPending;
 btnUndoAll.Enabled := btnPost.Enabled;
 btnUndo.Enabled := (qryGetEmployees.UpdateStatus <>
 usUnmodified) or ChangingData;
end;
procedure TfrmMain.qryGetEmployeesStartChanges(
 DataSet: TDataSet);
begin
 ChangingData := True;
end;
procedure TfrmMain.qryGetEmployeesEndChanges(
 DataSet: TDataSet);
begin
 ChangingData := False;
end;
procedure TfrmMain.btnPostClick(Sender: TObject);
begin
 dbEmployee.ApplyUpdates([qryGetEmployees]);
end;
procedure TfrmMain.btnUndoClick(Sender: TObject);
begin
 qryGetEmployees.RevertRecord;
end;
procedure TfrmMain.btnUndoAllClick(Sender: TObject);
begin
 qryGetEmployees.CancelUpdates;
end;

➤ Listing 2

➤ Figure 2:
CACHE2
example
program

August 1996 The Delphi Magazine 49

fonts to show different classes of
changes to the records.

Ok, so how to you accomplish all
this? Simplicity itself with cached
updates. All the key code for the
CACHE2 program is in Listing 2.

To control which classes of
records are displayed in a given
dataset, use the property
TDataSet.UpdateRecordTypes, which
accepts a set of TUpdateRecord-
Types: rtUnmodified, rtModified,
rtInserted or rtDeleted. Whatever
set members are included in this
property, those row types are
made visible in the dataset. In List-
ing 2, this is handled through the
chkFilterClick method which is
tied into the OnClick event handler
for each checkbox on the form.

The rows are always stored in-
ternally with the dataset, this prop-
erty just controls their visibility
(including whether you can move
to them in code). The default filter
for UpdateRecordTypes is all mem-
bers except rtDeleted. Also, if you
attempt to assign an empty set to
this property, it will default to
rtUnmodified.

Similarly, the TDataSet.Update-
Status property shows the class of
modification to which the current
row belongs: usUnmodified,
usModified, usInserted or
usDeleted. The CACHE2 program
merely examines this property in
the dataset’s OnCalcFields event
handler and sets the Status column
to the appropriate text.

Another handy property is
UpdatesPending, which is simply a
Boolean property indicating
whether or not there are updates
in the cache waiting to be applied
to the database. CACHE2 uses this
property to enable or disable the
buttons on the form depending
upon whether or not there are any
changes. This can be seen in the
dsGetEmployeesDataChange method
which is the OnDataChange event
handler for the datasource.

There’s also a little trickery
going on here to make sure that
field changes trigger the buttons’
enabled state, not just record
changes. The qryGetEmployees-
StartChanges method is tied into
the TQuery’s AfterEdit and After-
Insert event handlers, which are

triggered when the user begins
modifying the record. This sets a
form-level Boolean variable to indi-
cate that the current record is
being changed. This variable gets
reset by the qryGetEmployeesEnd-
Changes method which is the
AfterCancel and AfterPost event
handler. It is only when the
changes to the record are posted
to the cache that UpdateStatus
becomes available for that record.

Finally, in the btnPostClick,
btnUndoAllClick and btnUndoClick
methods you can see the code
needed to post all changes to the
database, abandon all changes or
discard the current row’s changes,
respectively.

TUpdateSQL
Cached updates are made even
more flexible by the inclusion of
the TUpdateSQL component. With
this component, you can specify
separate SQL statements for each
function: update, insert, or delete.
The SQL statements appear
respectively in the ModifySQL,
InsertSQL and DeleteSQL properties
of TUpdateSQL.

Why go to the trouble of coding
modification statements when
Delphi would do it itself anyway
(and transparently for different
backends)? First, you regain con-
trol over the exact SQL being sent.
Given the particular circumstances
of your dataset, you may be able to
produce a more efficient or refined
SQL statement for your needs.

Second, you can funnel implicit
dataset changes through stored
procedures where you might be
performing additional server-
based tasks not feasible with
Delphi’s direct manipulation. Or,
you may have sensitive data re-
quiring read-only permissions for
the user but which the application
can access and modify through a
stored procedure. This would not
be possible for implicit dataset
changes through Delphi.

Finally, and the principal reason
why TUpdateSQL was provided,
when the nature of the SQL query
prohibits a live result set, you can
update it anyway with TUpdateSQL.

You bind the TUpdateSQL compo-
nent to a dataset by assigning its

component name to the dataset’s
UpdateObject property. Now, when-
ever the dataset changes are finally
applied to the database, Delphi
uses the corresponding SQL state-
ment from the TUpdateSQL compo-
nent rather than its internal logic.

The SQL statements you supply
to TUpdateSQL function just like any
other SQL statement processed
through a TQuery with two addi-
tional considerations. The parame-
ters used in the SQL statements
must match the field names of the
dataset being updated. When
applying the updates, Delphi feeds
the dataset’s fields into the appro-
priate SQL statement by matching
the field names to the parameter
names.

Also, each parameter can have a
companion parameter of the same
name with the prefix Old_. This
parameter contains the field value
before it was changed by the user.
This is sometimes necessary if the
field used to locate the record was
itself changed to a new value. In
this case, you must use the field’s
old value to locate the original re-
cord before applying the updates.
Typically, you should be in the
practice of using the Old_ parame-
ters for all WHERE clauses, whether
or not those fields can be modified.

Once a TUpdateSQL component is
bound to a dataset component’s
UpdateObject property, you can
right-click on the TUpdateSQL com-
ponent at design time and select
UpdateSQL Editor to get the nifty
little tool you see in Figure 3. This
editor constructs your SQL state-
ments for you after you’ve selected
the appropriate fields for modifica-
tion and row selection. Also, in the
SQL tab, you can easily switch
between the text of the three SQL
statements through a set of radio
buttons. This really makes short
work of the tedious aspect of this
component.

Modifying
Read-Only Result Sets
By using cached updates and a
TUpdateSQL component, you can
effectively make changes to an oth-
erwise read-only dataset. For ex-
ample, not all SQL queries produce
live result sets which can be edited

50 The Delphi Magazine Issue 12

through code or data aware con-
trols. This obstacle now can be
overcome because the updates
applied through the TUpdateSQL
component are independent of the
underlying dataset.

Take a look at the CACHE3 pro-
gram shown in Figure 4. The query
shown at the top of the screen is
used to populate the grid at the
bottom. Because this query in-
volves a join between two tables, it
violates Delphi’s requirements for
a live result set and would normally
be read-only.

The Connect to UpdateSQL check-
box programmatically assigns or
un-assigns a TUpdateSQL component
to the query’s UpdateObject prop-
erty (the SQL statement used is
shown in Listing 3). When the
UpdateObject property is set, the
result set becomes modifiable and
the grid allows changes to the first
name and last name fields. When
the UpdateObject property is
cleared, the result set becomes
dead and the grid no longer allows
edits. This transformation is han-
dled entirely by the code shown in
Listing 4. Delphi transparently
manages the change in state
completely based on the presence
or absence of a valid TUpdateSQL
component bound to the dataset.

The reason why this works is
straightforward. The various con-
straints on the SQL statements
used to produce live result sets
ensure that Delphi has enough
information to decide on its own
what fields to update in what tables
and how to locate them. In the case
of the join query shown in Figure 4,

Delphi only sees a result set of four
fields, some of which belong to the
Employee table and some of which
belong to the Department table.
When it comes time to update a
‘row’ in this result set, no single
query can update both tables and
Delphi would have to decide which
fields belonged to which table.

With the TUpdateSQL component,
we are in complete control over the
SQL used to update the result set.
In this example, we know that the
Department field is merely a
reference field and should not be
part of the update. As shown in
Listing 3, only the fields relevant to
the Employee table are modified.
We’ll see next month how we can
use TUpdateSQL to apply updates to
both tables at once.

Conclusion
Cached updates greatly simplify
the development of data entry
screens and allows us to give even
more control to the user without
overly encumbering the database.
But you’ll have to take care. Since
the updates are cached, other

users will not see the changes until
they have been posted. And other
users may very well have made
their own changes to the same
records behind your back.

In the next issue we’ll look at how
we can address these concerns and
wrap up our look at cached up-
dates. In addition, we’ll continue
our venture into Delphi 2.0 by
examining client-side filtering of
datasets and the new data
dictionary.

Steve Troxell is a software engi-
neer with TurboPower Software
where he is developing Delphi
client/server applications for the
casino industry. Steve can be
contacted at stevet@tpower.com
or on CompuServe at 74071,2207

update Employee
 set First_name = :First_Name,
 Last_Name = :Last_Name
 where Emp_No = :Old_Emp_No

➤ Listing 3:
TUpdateSQL.ModifySQL

procedure TfrmMain.chkConnectUpdateSQLClick(Sender: TObject);
begin
 with qryGetEmployees do begin
 DisableControls;
 try
 Close;
 { Set the UpdateObject property of qryGetEmployees }
 if chkConnectUpdateSQL.Checked then
 UpdateObject := UpdateSQL1
 else
 UpdateObject := nil;
 Open;
 finally
 EnableControls;
 end;
 end;
end;

➤ Listing 4

➤ Figure 4➤ Figure 3

52 The Delphi Magazine Issue 12

	Identifying Classes of Changes
	TUpdateSQL
	Modifying Read-Only Result Sets
	Conclusion

